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LETTER TO THE EDITOR

Some properties of electromagnetic waves near the interface of
dielectric media

Liu Xin Ya

Department of Physics, Jiangxi University, Nanchang, Jiangxi 330047, People’s Republic
of China :

Received 24 October 1999, in final form 17 January 1991

Abstract. The problem of reflection and refraction of electromagnetic waves on the interface
of dielectric media is dealt with according to the generalized variational principle and
some properties of the electromagnetic waves near the interface are deduced from the
transformation properties of the constrained system under the transformation of coordin-
ates. These lead to the equation of motion of the centre of energy which shows that the
transverse shift is in existence.

Since the transverse shift (Ts) of a totally reflected light beam was predicted in the
1950s a number of research papers on the Ts phenomenon have been published [1-4],
of which the theoretical explanations are based on Maxwell’s equations or conservation
laws of electromagnetic fields and there are different opinions on both the conditions
of the existence of this effect and its value. We think it is necessary to carry out further
research to look for a more reasonable approach to Ts. In this letter we try to deal
with the problem of reflection and refraction of electromagnetic waves on the interface
of dielectric media according to the generalized variational principle and to deduce
some properties of the electromagnetic waves from the transformation properties of
the constrained system under the transformation of coordinates.

For simplicity, let us consider a spacetime restricted quasnmonochromatlc packet
of electromagnetic waves which impinges upon a interface from medium 1 and is
partly refracted into medium 2. The independent boundary conditions of the electro-
magnetic waves on the interface are the following equations:

hx(E, - E,)=0 (1)
nx(H, - H,) =0 (2)

where n stands fot the normal unit vector of the interface directing to medium 1. The
right-hand Cartesian coordinates can be set up as the following: the x; axis is the
direction of vector n and the x, axis and x, axis are on the interface. The x, axis is
in the direction of the normal of the incident plane according to the relations between

3 3 i H a 3 H {1} g A
field and potential and by introducing the four-potential A*( A4, id), equations (1) and

(2} can be rewritten as the following constraint conditions {take ¢ =1):
Gl A A}.4_A;'1+A;.4=0 (3)
G;= A?.z - Ai,‘t — A3+ A3 =0 (4)
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1 1 1 1
Ga="_A?,2_—Ai3“'_!4§,2+_t4§,3=0 (%)

M 1 2 Hz

1 1 1 1
G4=_Ai,3"_A:I‘.l__Aé.3+——Ag_l=0 (6)

M1 Ha [2F] H2

where A7, =0Aj/ox, (@=1,2,3,4; j=1,2; v=1,2,3,4; x, =(x,i1)).
Now let us consider the generalized variation of the above electromagnetic system.
It is known that the Lagrangian of a free electromagnetic field may be chosen as

=—3Z5A}. (M

According to the generalized variational principle, the generalized variation can be
turned into the natural one in terms of Lagrange multipliers and the generalized action
can be written as

I*=J (£+1,G,)d% (r=1,2,3,4) (8)

where (5, are the constraint conditions, and A,(x) are the Lagrangian multipliers which
vanish at the places where no constraint exists. In the present case A, vanish except
on the interface. The equations of motion of the electromagnetic system are given by
8I* =0. In the process of operation, A” and A, are regarded as independent variables
and three-dimensional space is divided into the subspaces v; {(j = 1, 2) by the interface.
After using the Gauss theorem it follows that

i) 2% 3G
BI*=J‘ (‘9 . +Ar_6'£¢:) §Aj" dx, dxzdx4—J- ( —+ A, a") BAJ d*x
aAj; dA;; dAj7, AL,

() G
+[(3§’_+,\ 9 ) AL dx, dx; dx,

o r o
8Aja A,

it

it

2+J G,5A, (9)

where the index j indicates the quantities belonging to v;. From 8I*=0 and the
independence of A] and A, we have

EX A 8G )

—t+A—] =0 x>0 <0 10
(BAEV aAs,] 3 or X3 (10)
G,-:O X3=0 (11)
3(1’)

5 —+A, BG;=0 x;=0 (12)

043 04,5
ag 3G,

—tA,
A5 AA

=0 (13}

in which (10) is the equation of motion of the electromagnetic field, and (11) is the
constraint condition and (12} and (13) are the equations identifying the Lagrange
multipliers. In order to identify A, we put (3)-(6) into (12) and (13), and obtain

A= “'A:,4 = A§.4 Ay = _A%A = A%,a
A= "“I-LlA:;,a:P»zA%,s A= P'IA{,3= —F'ZA;,J

which are the values of A, on the interface and outside A, =0.
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Now let us discuss the transformation properties of the above constrained elec-
tromagnetic system under the transformation of coordinates. The changes of spacetime
points and potential functions under infinitesimal transformation can be written as

8x, = x;L =X, = Eun®s (14)
SA” = A (x") — A®(x) = {&ym, (15)
8A” = A% (x) - A%(x) = n{, 0, (16)

in which @, (s=1,2,...,1) are the parameters of Lie group of the transformation. It
is assumed in field theory that the functional formulation of Lagrangian is invanant
and that the actions at the same physical point are equal under the transformation, i.e.

L(AS) d*x' = L(A%) d*x an

whara 4% and 4%y ctand for ¢
YWilwlw W A CRIIVE WM A DLCHILW AV L3

obtain

x4 aéx
— AL+ ¥—F=0. {18)
dA, ax,,
Because the Lagrangian does not explicitly depend on x,, equation (18) may be
converted into
A s
-4 SA® dx+ I ] (-— SA” + £8x ) d*x=0. 19
J ( “aAj’;,) H\aAT ® (19)

The change of the constraint conditions under the infinitesimal transformation is

manrn At A wxr

O s P ARAD A ~
o, =0 joA L J10A ,. 1v1u1|.lplyulg 8G, Dy A, and ulu:glauug the proquct A,.uu,, WE

have
a(A,G,)) (a(A,G,) )] . J 4
—, =) BA% + o, | ——" BA™ = G, d*x.
I[( 8, o A A°, A% ) | d'x A,8G, d*x (20)

Adding (20) to (19) and assuming that the motion of the electmmagnetic field obeys

Euler- Lagrange equauons and ihatihe 1nlegrdlcu rcglun can be arbiirar ¥, WE Can UDldlIl

¥ 3G,
A SA™
3 (Aﬂ +.Sf§x) - ( aAi) (21)

which is called the equation for the transformation properties of the electromagnetic
system under the transformation of coordinates [5].

Next tet us consider two usual transformations.

(I) The transformation of parallel translation: 8x,=§£,, 5A% =0, A" =—-A"¢,.
In this case (21) becomes

a,T,.,=H, (22)
where
¥
T,.= - %8,
M aAn (23)

=4, (:\ aj,)A‘L. (24)
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The T,, is the tensor of the energy-momenturmn density of the electromagnetic waves.
The integration of (22) over three-dimensional space becomes

G,
8.;[ Tu.; dc=—J' (T“) - ‘1:3) dx1 dxz
x3=0 6 1,3 ’

ag,
~j 0(1"‘2) "I AT 5‘_3)dx1dx2-—A2)—-Af) (25)
Xz = 23
where
; 3G, 3G, . '
Ag>=LJ[a4(,\,—a - ,-,4) > A;VA,F,,]d. (26)

Substituting (23} and (22} into (25), we have

B‘I T.,do= 5“3(.[ £ dx, dx2+‘|. £ dx, dxz) —A A% (27)
x3=0 X5=0

Because | T..dv=(P,iH) is the four-momentum, equation (27) implies that the
components P, P, and energy H are conserved respectively if the interface is infinitely
thin (then AY - 0).

(I1) The Lorentz transformation: 8x, = ¢,,,.x,, 6A" =3¢, D58 AP,

aA® =}, (DBA® + X, A% — X, A%)

where D32 =§,,8;, — 8..95, are the elements of a tensor representation of a Lorentz
group. In this case (21) becomes

duopn=Hp, (28)
where
9L ap 48
- GA" Dy AP+ x,T,,—x,T, (29)
aG afl 48 o o
Hy,,=-a.l A, 24" (DR AP+ x,A% — x,AL). (30)
... is the tensor of the density of the angular momentum of the electromagnetic waves.

The integration of (28) over three-dimensional space becomes

64 J. ppl.4 do= j (pr“d _xF8p3)$(l) dx1 dxz
x3=0

+J. (x,8,3— X.8,5) £ dx, dx,— Al - A% (31)
x3=0
where
. G, a
Aﬁ,ﬂ=[ [34(:«,& (DBAP+x,A7, —~ xFAj,p))
vy ;4
3G, B 4B a
—A, o) 3, (D AP +x,A7, —x,A7,) | dv. (32)

Because M, =] J;,dy, M, =[J314dp, and M;= | Jiz4dv are the components of the
total angular momentum, M, is conserved if the interface is infinitely thin.
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Let us further consider equation (31) to find the centre of energy of the reflected
and refracted waves. We take p=i (i=1,2,3), u =4 and put the expressions of Jiy
and D% into (31), and then we can obtain

84 J. xiT44 de =&4 J (A:4A4_ ;Ai+x41-;‘4) du

—853x4(f £V dx, dx2+J PP dx, dxz) AL —AD, (33)
Xa=0 x3=0

Let X;=(1/iH) | x,Ty, dv be the coordinates of the centre of energy; from (33) and
(27) the equations of motion of the centre of energy are found as follows

dX;
H- - (85 +8)X,

=R~(A§"+A$2))x4+J(A'MA‘ AfA) do~ AR - A (34)

which show that the centre of energy will shift along the x, axis provided that A or
AY) is in existence.
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